

Short Range Surveillance Link for Close Proximity Navigation during Closely Spaced Parallel

ICNS Conference May 2005

Pavan Reddy
Mary Ellen Miller
AMHS / Raytheon NCS
Marlborough, MA

Agenda

- Terminal Area Capacity Enhancement (TACEC) Overview
- Blunder Situations in Closely Spaced Parallel Approach
- Close Proximity Surveillance Challenges
- Possible approaches
- Conclusions

Terminal Area Capacity Enhancement Concept (TACEC)

Raytheon

TACEC Addresses Need for Increased Terminal Area Capacity

TACEC Closely Spaced Parallel Approaches

Raytheon

Network Centric Systems

Need for Blunder detection capability in Final Approach

Blunder Situation

CSPA Surveillance

- Need for surveillance to accommodate situations where leading aircraft blunders.
- Currently CSPA allowed on runways spaced >2000 ft
 - TCAS II (logic version 6.04a)
 - » Most Commonly deployed
 - » Update Rate 1s
 - » In CSPA approaches > 2000, used only in TA not RA mode
 - » 8 sec prior warning
 - TCAS II (logic version 7.0)
 - » Prevent issuance of multiple TA against same target during parallel approaches.
 - » Reduces Faulty RAs 20-40%
 - Precision Runway Monitor (PRM)
 - » Update Rate 0.5s (ASR ~4.8s)
 - » Allows controller to detect blunder and direct evasion

Current CSPA delays

- 8 Seconds available from detecting blunder to avoid collision.
- Controller has up to 4 seconds to issue evasion directions, Leaving the Pilot 4 seconds to comply.
- Currently TCAS RA not used since controller left out of loop.
- Reducing runway spacing further will require reducing delay further.
- Options
 - TCAS w/ RA controller not in loop
 - TCAS w/ RA and smart auto pilot with auto escape
 - ADS-B enhanced CAS

ADS Enhanced Collision Avoidance

- ADS-B: Automatic Position Broadcast System
- ADS-B data may be used within collision avoidance logic to reduce the number of unnecessary alerts and improve the RA maneuver processing by enabling more accurate trajectory prediction.
- Collision avoidance algorithms can be enhanced by using ADS-B state vector information.
- State Vector Report: Contains information on aircraft position and current velocity
 - Geometric Position
 - Barometric Altitude
 - Horizontal Velocity
 - Vertical Rate

Ultra Close Proximity Surveillance cont.

- Runway spacing < 2000 ft.
- ADS-B has been investigated for surveillance capability
- ADS-B 1Hz update rate (½ Hz effective)
- Blunder Evasion Delay distribution

Antenna/Computer (fixed)	0.5s
EM Actuators (fixed)	0.5s
 Pilot Reaction Time 	0.3-2.0s
 Autopilot Reaction (fixed) 	0.5 s
 Data link/Collision Detection 	1 0-2 0s

- Probability of Collision 95% Confidence interval +/- 0.3%
 - Auto Pilot + ILS (1 sigma 132 ft) = 8.994%
 - Auto Pilot + LAAS (1sigma 4.9 ft) = 0.001 %
- ADS-B lacks sufficient intent Information (blunder roll rate) to enable auto-escape.

Intent Information such as roll rate blunder and evade

Raytheon

- **Implementation Possibilities**
 - Leader only issues roll rate alert if blunder en dangers follower.
 - Constant broadcast of roll rate by leader during final approach
- **Delivery Possibilities**
 - Augmenting ADS-B
 - Using dedicated stand alone close short range data link to provide roll rate information.
- Both approaches will need automation that can use roll rate information to predict collision possibility
- Auto-escape automation need to compute and execute evasion path.

Modifying ADS-B

- ADS-B Automatic Dependent Surveillance Broadcast Mode
- ADS-B system allows for surveillance without the need for Radar
- Modify ADS by incorporating close proximity alert capability
 - Include aircraft roll alert information to ADS-B message
 - Increase ADS-B update rate to greater than 2 Hz
- Pros of this approach
 - Operates in existing ADS-B link frequency bands
 - » 1090 ES (Mode S)
 - » UAT
- Cons
 - Need to modified ADS-B equipment
 - Range of ADS-B (Mode S) is around 100 miles, high update rate can saturate channel

- Prior to final approach Aircrafts informed of final approach pairing partners via Ground/Air digital data link
- During final approach Follower navigates on Leader ADS-B
- Leader broadcasts Roll information to Follower via Close Proximity Surveillance link in Final approach.
- Aeronautical Communication
 - VDL-M3
 - UAT
- Other Commercial Technology
 - IEEE 802.11 (Wireless Ethernet)
 - IEEE 802.14 (Blue Tooth/PAN)
 - UWB

Data Link Requirements

- Requirements
- Latency: < 200 ms.
- Min Range:
 - Larger Range
 - » prevents frequency reuse
 - » Too many users using shared channel
 - » Require more power
 - Too short a range
 - » Will require planes to be too close.
 - » Will result in an ineffective Alert system
 - Minimum Range required is related too
 - » Maximum Separation between Leader & Follower aircrafts

Min. Range Requirement Omni-directional antenna

Raytheon

Reduced Position Error w/ Coupled Control

Raytheon

Aeronautical Link

VDL-Mode 3 air to air link could be used

- Pros
 - » Max latency 120 ms
 - » Existing Radios can be used
- Cons
 - » Long Range
 - » Requires ground infrastructure
- Use Low Power Digital VHF Point to Point Link
 - Pros
 - » Operates in Existing VHF aeronautical band
 - » Low range mean frequency can be reused
 - Cons
 - » VHF band is congested, hard to find extra frequencies
 - » Vulnerable to Jamming
 - » Interoperability with existing VHF radio

Ad hoc Sensor network Technology

- Sensor network looking at creating short term ad hoc networks that are
- Variety of commercial technology available
 - IEEE 802.11 (Wireless Ethernet)
 - » Various waveforms available FH, DSSS, OFDM
 - IEEE 802.14.4 (Low Power Long Range Blue Tooth)
 - UWB

Pros

 CDMA Anti Jamming Capable, Low Power Output, Short Range < 2 nm allows for good frequency reuse.

Cons

- Require Wideband, CSMA/CD based required low channel utilization to keep latency low.
- Current commercial implementation of have relatively low range (typically <2000') due FCC limitation.

Conclusions

- Blundering incidents raise the risk of collision during Closely space Parallel Approach.
- Current Close Proximity Surveillance requires TCAS and PRM for runways >2000' ft
- Ultra Close Proximity navigation (flight paths spaced <2000'ft) required enhanced surveillance to prevent collision in the event of a blunder.
- ADS-B, high accuracy SBAS, smart auto-pilots can allow this if intent information is available
- ADS-B lacks roll rate information.
- ADS-B enhancement needed or a short range stand alone surveillance link.

Network Centric Systems

Questions?